5 years ago

Structure of the deactive state of mammalian respiratory complex I

J., Hirst, K. R., J. N., Vinothkumar, Blaza
Complex I (NADH:ubiquinone oxidoreductase) is central to energy metabolism in mammalian mitochondria. It couples NADH oxidation by ubiquinone to proton transport across the energy-conserving inner membrane, catalyzing respiration and driving ATP synthesis. In the absence of substrates, "active" complex I gradually enters a pronounced resting or "deactive" state. The active-deactive transition occurs during ischemia and is crucial for controlling how respiration recovers upon reperfusion. Here, we set a highly-active preparation of Bos taurus complex I into the biochemically-defined deactive state, and used single-particle electron cryomicroscopy to determine its structure to 4.1 A resolution. The deactive state arises when critical structural elements that form the ubiquinone-binding site become disordered, and we propose reactivation is induced when substrate binding templates their reordering. Our structure both rationalizes biochemical data on the deactive state, and offers new insights into its physiological and cellular roles.

Publisher URL: http://biorxiv.org/cgi/content/short/165753v1

DOI: 10.1101/165753

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.