3 years ago

Replicable Parallel Branch and Bound Search.

Ciaran McCreesh, Phil Trinder, Patrick Maier, Blair Archibald, Rob Stewart

Combinatorial branch and bound searches are a common technique for solving global optimisation and decision problems. Their performance often depends on good search order heuristics, refined over decades of algorithms research. Parallel search necessarily deviates from the sequential search order, sometimes dramatically and unpredictably, e.g. by distributing work at random. This can disrupt effective search order heuristics and lead to unexpected and highly variable parallel performance. The variability makes it hard to reason about the parallel performance of combinatorial searches.

This paper presents a generic parallel branch and bound skeleton, implemented in Haskell, with replicable parallel performance. The skeleton aims to preserve the search order heuristic by distributing work in an ordered fashion, closely following the sequential search order. We demonstrate the generality of the approach by applying the skeleton to 40 instances of three combinatorial problems: Maximum Clique, 0/1 Knapsack and Travelling Salesperson. The overheads of our Haskell skeleton are reasonable: giving slowdown factors of between 1.9 and 6.2 compared with a class-leading, dedicated, and highly optimised C++ Maximum Clique solver. We demonstrate scaling up to 200 cores of a Beowulf cluster, achieving speedups of 100x for several Maximum Clique instances. We demonstrate low variance of parallel performance across all instances of the three combinatorial problems and at all scales up to 200 cores, with median Relative Standard Deviation (RSD) below 2%. Parallel solvers that do not follow the sequential search order exhibit far higher variance, with median RSD exceeding 85% for Knapsack.

Publisher URL: http://arxiv.org/abs/1703.05647

DOI: arXiv:1703.05647v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.