3 years ago

Human motion primitive discovery and recognition.

Marta Sanzari, Francesco Puja, Valsamis Ntouskos, Fiora Pirri, Simone Grazioso

We present a novel framework for the automatic discovery and recognition of human motion primitives from motion capture data. Human motion primitives are discovered by optimizing the 'motion flux', a quantity which depends on the motion of a group of skeletal joints. Models of each primitive category are computed via non-parametric Bayes methods and recognition is performed based on their geometric properties. A normalization of the primitives is proposed in order to make them invariant with respect to anatomical variations and data sampling rate. Using our framework we build a publicly available dataset of human motion primitives based on motion capture sequences taken from well-known datasets. We expect that our framework, by providing an objective way for discovering and categorizing human motion, will be a useful tool in numerous research fields related to Robotics including human inspired motion generation, learning by demonstration, and intuitive human-robot interaction.

Publisher URL: http://arxiv.org/abs/1709.10494

DOI: arXiv:1709.10494v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.