3 years ago

Fault-tolerant parallel scheduling of arbitrary length jobs on a shared channel.

Jarosław Mirek, Marek Klonowski, Dariusz R. Kowalski, Prudence W.H. Wong

We study the problem of scheduling jobs on fault-prone machines communicating via a shared channel, also known as multiple-access channel. We have $n$ arbitrary length jobs to be scheduled on $m$ identical machines, $f$ of which are prone to crashes by an adversary. A machine can inform other machines when a job is completed via the channel without collision detection. Performance is measured by the total number of available machine steps during the whole execution. Our goal is to study the impact of preemption (i.e., interrupting the execution of a job and resuming later in the same or different machine) and failures on the work performance of job processing. The novelty is the ability to identify the features that determine the complexity (difficulty) of the problem. We show that the problem becomes difficult when preemption is not allowed, by showing corresponding lower and upper bounds, the latter with algorithms reaching them. We also prove that randomization helps even more, but only against a non-adaptive adversary; in the presence of more severe adaptive adversary, randomization does not help in any setting. Our work has extended from previous work that focused on settings including: scheduling on multiple-access channel without machine failures, complete information about failures, or incomplete information about failures (like in this work) but with unit length jobs and, hence, without considering preemption.

Publisher URL: http://arxiv.org/abs/1710.07380

DOI: arXiv:1710.07380v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.