5 years ago

Self-Healing Dynamic Hydrogel as Injectable Shock-Absorbing Artificial Nucleus Pulposus

Self-Healing Dynamic Hydrogel as Injectable Shock-Absorbing Artificial Nucleus Pulposus
David Eglin, Pablo Casuso, Adrián Pérez-San Vicente, Mauro Alini, Manuela Ernst, Marianna Peroglio, Damien Dupin, Iraida Loinaz, Hans-Jürgen Grande
The intervertebral discs (IVDs) provide unique flexibility to the spine and exceptional shock absorbing properties under impact. The inner core of the IVD, the nucleus pulposus (NP) is responsible for this adaptive behavior. Herein, we evaluate an injectable, self-healing dynamic hydrogel (DH) based on gold(I)-thiolate/disulfide (Au–S/SS) exchange as NP replacement in a spine motion segment model. For the first time, we report the application of dynamic covalent hydrogels inside biological tissues. The dynamic exchange between Au–S species and disulfide bonds (SS) resulted in self-healing ability and frequency-dependent stiffness of the hydrogel, which was also confirmed in spine motion segments. Injection of preformed DH into nucleotomized IVDs restored the full biomechanical properties of intact IVDs, including the stiffening effect observed at increasing frequencies, which cannot be achieved with conventional covalent hydrogel. DH has the potential to counteract IVD degeneration associated with high frequency vibrations. Self-healing properties, confirmed by rheology studies and macroscopic observation after injection, were required to inject preformed DH, which recovered its mechanical integrity and microstructure to act as an artificial NP. On the other hand, covalent hydrogel did not show any restoration of NP properties as this conventional material suffered irreversible damages after injection, which demonstrates that the dynamic properties are crucial for this application. The persistence of DH in the IVD space following cyclic high-frequency loading, confirmed by tomography after mechanical testing, suggests that this material would have long life span as an injectable NP replacement material.

Publisher URL: http://dx.doi.org/10.1021/acs.biomac.7b00566

DOI: 10.1021/acs.biomac.7b00566

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.