3 years ago

Unraveling the Charge Extraction Mechanism of Perovskite Solar Cells Fabricated with Two-Step Spin Coating: Interfacial Energetics between Methylammonium Lead Iodide and C60

Unraveling the Charge Extraction Mechanism of Perovskite Solar Cells Fabricated with Two-Step Spin Coating: Interfacial Energetics between Methylammonium Lead Iodide and C60
Junkyeong Jeong, Hyunbok Lee, Minju Kim, Donghee Kang, Dongguen Shin, Yeonjin Yi, Soohyung Park
In organolead halide perovskite solar cells (PSCs), interfacial properties between the perovskite and charge transport layers are the critical factors governing charge extraction efficiency. In this study, the effect of interfacial energetics between two-step spin-coated methylammonium lead iodide (MAPbI3) with different methylammonium iodide (MAI) concentrations and C60 on the charge extraction efficiency is investigated. The electronic structures of perovskite films are significantly varied by the MAI concentrations due to the changes in the residual precursor and MA+ defect content. As compared to the optimum PSCs with 25 mg mL–1 MAI, PSCs with other MAI concentrations show significantly lower power conversion efficiencies and severe hysteresis. The energy level alignment at the C60/MAPbI3 interface determined by ultraviolet and inverse photoelectron spectroscopy measurements reveals the origin of distinct differences in device performances. The conduction band offset at the C60/MAPbI3 interface plays a crucial role in efficient charge extraction in PSCs.

Publisher URL: http://dx.doi.org/10.1021/acs.jpclett.7b02562

DOI: 10.1021/acs.jpclett.7b02562

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.