3 years ago

Atomistic Explanation for Interlayer Charge Transfer in Metal–Semiconductor Nanocomposites: The Case of Silver and Anatase

Atomistic Explanation for Interlayer Charge Transfer in Metal–Semiconductor Nanocomposites: The Case of Silver and Anatase
Giovanni Di Liberto, Luigi Falciola, Leonardo Lo Presti, Michele Ceotto, Valentina Pifferi
A concerted theoretical and experimental investigation of the silver/anatase hybrid nanocomposite, a very promising material for advanced sensing applications, is presented. We measure its exceptional electrochemical virtues in terms of current densities and reproducibility, providing their explanation at the atomic-scale level and demonstrating how and why silver acts as a positive electrode. Using periodic plane-wave DFT calculations, we estimate the overall amount of electron transfer toward the semiconductor side of the interface at equilibrium. Suitably designed (photo)electrochemical experiments strictly agree, both qualitatively and quantitatively, with the theoretical charge transfer estimates. The unique permanent charge separation occurring in the device is possible because of the favorable synergy of Ag and TiO2, which exploits in a favorable band alignment, while the electron–hole recombination rate and carrier mobility decrease when electrons cross the metal–semiconductor interface. Finally, the hybrid material is proven to be extremely robust against aging, showing complete regeneration, even after 1 year.

Publisher URL: http://dx.doi.org/10.1021/acs.jpclett.7b02555

DOI: 10.1021/acs.jpclett.7b02555

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.