3 years ago

Role of Molecular Dipoles in Charge Transport across Large Area Molecular Junctions Delineated Using Isomorphic Self-Assembled Monolayers

Role of Molecular Dipoles in Charge Transport across Large Area Molecular Junctions Delineated Using Isomorphic Self-Assembled Monolayers
Martin Thuo, Zhengjia Wang, Jiahao Chen, Symon Gathiaka
Delineating the role of dipoles in large area junctions that are based on self-assembled monolayers (SAMs) is challenging due to molecular tilt, surface defects, and interchain coupling among other features. To mitigate SAM-based effects in study of dipoles, we investigated tunneling rates across carboranes—isostructural molecules that orient along the surface normal on Au (but bear different dipole moments) without changing the thickness, packing density, or morphology of the SAM. Using the Au-SAM//Ga2O3-EGaIn junction (where “//” = physisorption, “–” = chemisorption, and EGaIn is eutectic gallium–indium), we observe that molecules with dipole moments oriented along the surface normal (with dipole moment, p = 4.1D for both M9 and 1O2) gave lower currents than when the dipole is orthogonal (p = 1.1 D, M1) at ±0.5 V applied bias. Similarly, from transition voltage spectroscopy, the transition voltages, VT (volt), are significantly different. (0.5, 0.43, and 0.4 V for M1, M9, and 1O2, respectively). We infer that the magnitude and direction of a dipole moments significantly affect the rate of charge transport across large area junctions with Δ log|J| ≅ 0.4 per Debye. This difference is largely due to effect of the dipole moment on the molecule-electrode coupling strength, Γ, hence effect of dipoles is likely to manifest in the contact resistance, Jo, although in conformational flexible molecules field-induced effects are expected.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b07634

DOI: 10.1021/acs.jpcc.7b07634

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.