3 years ago

Selective Hydrogenation of Acetylene over Pd-In/Al2O3 Catalyst: Promotional Effect of Indium and Composition-Dependent Performance

Selective Hydrogenation of Acetylene over Pd-In/Al2O3 Catalyst: Promotional Effect of Indium and Composition-Dependent Performance
Yian Zhu, Zhijun Sui, Xinggui Zhou, Yueqiang Cao, De Chen
Highly dispersed bimetallic Pd-In catalysts on Al2O3 were prepared by a simple impregnation method. In comparison with the unsupported intermetallic catalyst, the supported Pd-In catalyst exhibited several magnitudes higher activity and similar selectivity for selective acetylene hydrogenation. Moreover, the activity, selectivity, and anticoking performance of the Pd-In catalyst were superior to those of the monometallic Pd catalyst. The electron transferred from indium weakened the adsorption of ethylene on the negatively charged Pd sites and hence improved the selectivity of Pd-In/Al2O3. The inhibited formation of hydride due to the presence of indium also contributed to the higher selectivity. The promoted activation of hydrogen, owing to the weak adsorption of acetylene on Pd-In/Al2O3, and decreased particle size jointly contributed to the enhanced activity of Pd-In/Al2O3. In addition, green oil formation on Pd-In/Al2O3 was retarded by the presence of indium, contributing to the enhanced stability of the catalyst. The bimetallic Pd-In catalysts showed a strongly composition dependent performance, which resulted from the different extent of electronic and/or geometric modification of Pd active sites.

Publisher URL: http://dx.doi.org/10.1021/acscatal.7b01745

DOI: 10.1021/acscatal.7b01745

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.