5 years ago

Real-time observation of perturbation of a Drosophila embryo's early cleavage cycles with microfluidics

Real-time observation of perturbation of a Drosophila embryo's early cleavage cycles with microfluidics
It is of great importance to understand biochemical system's behavior toward environmental perturbation during the development of living organisms. Here a microfluidic platform for Drosophila embryo's online development and observation is presented. The system is capable of developing the embryo's anterior and posterior halves controlled at different temperature environments, and it can be easily coupled with a confocal microscope for real-time image acquisition. The microfluidic chip is consisted of a polymethylmethacrylate (PMMA) substrate with a thickness of 4.0 mm and a polydimethylsiloxane (PDMS) cover designed with a typical ‘Y’ channel with a depth of 400 μm, width of 800 μm. Temperature gradients were created across the anterior half and posterior half of the embryo by utilizing two streams of laminar flow with different temperatures. It was found that thermal gradient would result in asynchronous development of the two halves of the embryos, and the developing difference was related to the direction of thermal gradient. This may result from the presence of an unknown mechanism located in the anterior half of the embryo, which oversees nuclear division synchronicity. These observations would help better understand compensatory mechanisms of Drosophila embryo's development under environmental perturbations.

Publisher URL: www.sciencedirect.com/science

DOI: S000326701730689X

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.