3 years ago

Determination of aqueous antibiotic solutions using SERS nanogratings

Determination of aqueous antibiotic solutions using SERS nanogratings
The emergence of antibiotics and their active metabolites in aquatic ecosystem has motivated the development of sensitive and reliable sensors to monitor traces of antibiotics and metabolites in drinking water sources (i.e. surface water). The surface enhanced Raman scattering (SERS) technique, which is widely recognized as a high sensitivity method for molecular vibrational detection, is potentially a powerful tool for trace environmental contamination analysis. The main goal of this work is to demonstrate pharmaceutical and metabolite multiplexing detection using the SERS approach. Periodic metallic nanostructures were fabricated using laser interference lithography (LIL) and used as SERS substrates (platform that supports the SERS effect). The LIL method allowed excellent substrate-to-substrate geometric parameters variations; for instance, the variations in periodicity were determined to be less than 1%. A common fluoroquinolone (FQ) parent-and-metabolite pair, enrofloxacin (ENRO) and ciprofloxacin (CIPRO), was targeted for multiplexing detection on the relative uniform substrates fabricated by LIL. The quantifications of the analytes mixtures were achieved by chemometric analysis (i.e. non-negative matrix factorization with alternating least square algorithm (NMF-ALS)). The limit of the quantification (LOQ) of the present method is in the ppm-level with less than 10% spatial variation in the SERS signal.

Publisher URL: www.sciencedirect.com/science

DOI: S0003267017306906

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.