3 years ago

Evaluation of wood fiber composites based on a novel simultaneous defibration and compounding process

Evaluation of wood fiber composites based on a novel simultaneous defibration and compounding process
Oliver Mertens, Kim Christian Krause, Andreas Krause
The distinctive length and morphology characteristics of thermomechanical produced wood fibers make it a promising candidate for the utilization in polymer composites. However, due to the low bulk density of these fibers, the feeding into the compounding process (i.e., extruders) is quite challenging. In this study, a novel simultaneous defibration and compounding process are conducted in order to solve the feed-in problem of thermomechanical fibers. A disc-refiner was used to defibrate wood chips to fibers and compound the fibers with neat polymer granulates in one process step. After the process, the material showed typically thermomechanical fibers with chopped polymer particles which were inseparably attached to the fiber. The observed mechanical properties of the composites were slightly lower than some literature values. With field emission scanning electron microscopy and X-ray microtomography analysis, voids and a polymer enriched surface were found influencing the composites performance. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 135, 45859.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/app.45859

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.