3 years ago

The Histone Variant H2A.Z Is a Master Regulator of the Epithelial-Mesenchymal Transition

The Histone Variant H2A.Z Is a Master Regulator of the Epithelial-Mesenchymal Transition
Maxim Nekrasov, Renae Domaschenz, Sebastian Kurscheid, David J. Tremethick, Shuyi Han


Epithelial-mesenchymal transition (EMT) is a profound example of cell plasticity that is crucial for embryonic development and cancer. Although it has long been suspected that chromatin-based mechanisms play a role in this process, no master regulator that can specifically regulate EMT has been identified to date. Here, we show that H2A.Z can coordinate EMT by serving as either an activator or repressor of epithelial or mesenchymal gene expression, respectively. Following induction of EMT by TGF-β, we observed an unexpected loss of H2A.Z across both downregulated epithelial and upregulated mesenchymal promoters. Strikingly, the repression of epithelial gene expression was associated with reduction of H2A.Z upstream of the transcription start site (TSS), while the activation of mesenchymal gene expression was dependent on removal of H2A.Z downstream of the TSS. Therefore, the ability of H2A.Z to regulate EMT is dependent on its position, either upstream or downstream of the TSS.

Publisher URL: http://www.cell.com/cell-reports/fulltext/S2211-1247(17)31391-8

DOI: 10.1016/j.celrep.2017.09.086

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.