3 years ago

A Machine Learning-based Surface Electromyography Topography Evaluation for Prognostic Prediction of Functional Restoration Rehabilitation in Chronic Low Back Pain

A Machine Learning-based Surface Electromyography Topography Evaluation for Prognostic Prediction of Functional Restoration Rehabilitation in Chronic Low Back Pain
Jiang, Naifu, Luk, Keith Dip-Kei, Hu, Yong
Study Design.A retrospective study. Objective.The aim of this study was to investigate the feasibility and applicability of support vector machine (SVM) algorithm in classifying patients with LBP who would obtain satisfactory or unsatisfactory progress after the functional restoration rehabilitation program. Summary of Background Data.Dynamic surface electromyography (SEMG) topography has demonstrated the potential use in predicting the prognosis of functional restoration rehabilitation for patients with low back pain (LBP). However, processing from raw SEMG topography to make prediction is not easy to clinicians. Methods.A total of 30 patients with nonspecific LBP were recruited and divided into “responding” and “non-responding” group according to the change of Visual analog pain rating scale and Oswestry Disability Index. Each patient received a 12-week functional restoration rehabilitation program. A normal database was calculated from a control group from 48 healthy participants. Root-mean-square difference (RMSD) was extracted from the recorded dynamic SEMG topography during symmetrical and asymmetrical trunk-movement. SVM and cross-validation were applied to the prediction based on the optimized features selected by the sequential floating forward selection (SFFS) algorithm. Results.RMSD feature parameters following rehabilitation in the “responding” group showed a significant difference (P < 0.05) with the one in the “nonresponding” group. The SVM classifier with Quadratic kernel based on SFFS-selected features showed the best prediction performance (accuracy: 96.67%, sensitivity: 100%, specificity: 93.75%, average area under curve [AUC]: 0.8925) comparing with linear kernel (accuracy: 80.00%, sensitivity: 85.71%, specificity: 75.00%, average AUC: 0.7825), polynomial kernel (accuracy: 93.33%, sensitivity: 92.86%, specificity: 93.75%, average AUC: 0.9675), and radial basis function (RBF) kernel (accuracy: 86.67%, sensitivity: 85.71%, specificity: 87.50%, average AUC: 0.7900). Conclusion.The use of SVM-based classifier of SEMG topography can be applied to identify the patient responding to functional restoration rehabilitation, which will help the healthcare worker to improve the efficiency of LBP rehabilitation.Level of Evidence: 3
You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.