3 years ago

Uptake, Accumulation, and in Planta Distribution of Coexisting Cerium Oxide Nanoparticles and Cadmium in Glycine max (L.) Merr. 

Uptake, Accumulation, and in Planta Distribution of Coexisting Cerium Oxide Nanoparticles and Cadmium in Glycine max (L.) Merr. 
managing.editor@est.acs.org (American Chemical Society)
Agricultural soils are likely to be polluted by both conventional and emerging contaminants at the same time. Understanding the interactions of coexisting engineered nanoparticles (ENPs) and trace elements (a common source of abiotic stress) is critical to gaining insights into the accumulation of these two groups of chemicals by plants. The objectives of this study were to determine the uptake and accumulation of coexisting ENPs and trace elements by soybeans and to gain insights into the physiological mechanisms resulting in different plant accumulation of these materials. The combinations of three cadmium levels (0 [control] and 0.25 and 1 milligrams per kilogram of dry soil) and two CeO2 NPs concentrations (0 [control] and 500 milligrams per kilogram of dry soil) were investigated. Measurements of the plant biomass and physiological parameters indicated that CeO2 NPs led to higher variable fluorescence to maximum fluorescence ratio, suggesting that CeO2 NPs enhanced the plant light energy use efficiency by photosystem II. In addition, the presence of CeO2 NPs did not affect Cd accumulation in soybean, but Cd significantly increased the accumulation of Ce in plant tissues, especially in roots and older leaves. The altered Ce in planta distribution was partially associated with the formation of root apoplastic barriers in the co-presence of Cd and CeO2 NPs.

Publisher URL: http://dx.doi.org/10.1021/acs.est.7b03363

DOI: 10.1021/acs.est.7b03363

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.