4 years ago

Role of Halide Ions in the Nature of the Magnetic Anisotropy in Tetrahedral CoII Complexes

Role of Halide Ions in the Nature of the Magnetic Anisotropy in Tetrahedral CoII Complexes
Maheswaran Shanmugam, Shefali Vaidya, Gopalan Rajaraman, Saurabh Kumar Singh, Pragya Shukla, Kamaluddin Ansari
A series of mononuclear tetrahedral CoII complexes with a general molecular formula [CoL2X2] [L=thiourea and X=Cl (1), Br (2) and I (3)] were synthesized and their structures were characterized by single-crystal X-ray diffraction. Direct-current (dc) magnetic susceptibility [χMT(T) and M(H)] and its slow relaxation of magnetization were measured for all three complexes. The experimental dc magnetic data are excellently reproduced by fitting both χMT(T) and M(H) simultaneously with the parameters D=+10.8 cm−1, g1=2.2, g2=2.2, and g3=2.4 for 1; D=−18.7 cm−1, giso=2.21 for 2; and D=−19.3 cm−1, giso=2.3 for 3. The replacement of chloride in 1 by bromide or iodide (in 2 and 3, respectively) was accompanied by a change in both sign and magnitude of the magnetic anisotropy D. Field-induced out-of-phase susceptibility signals observed in 10 % diluted samples of 1–3 imply slow relaxation of magnetization of molecular origin. To better understand the magnetization relaxation dynamics of complexes 1–3, detailed ab initio CASSCF/NEVPT2 calculations were performed. The computed spin Hamiltonian parameters are in good agreement with experimental data. In particular, the calculations unveil the role of halide ions in switching the sign of D on moving from Cl− to I−. The large spin–orbit coupling constant associated with the heavier halide ion and weaker π donation reduces the ground state–excited state gap, which leads to a larger contribution to negative D for complex 3 compared to complex 1. Further magnetostructural D correlations were developed to understand the role of structural distortion in the sign and magnitude of D values in this family of complexes. Meet the SIMs: A family of tetrahedral CoII single-ion magnets with general molecular formula [Co(L1)2X2] (L1=thiourea; X=Cl (1), Br (2), I (3)] is reported. The role of halide ions in modulating the sign and magnitude of the magnetic anisotropy D in these complexes was studied in detail (see figure), and the observed experimental results are firmly supported by theoretical calculations.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/chem.201606031

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.