3 years ago

Distinct Toxicological Characteristics and Mechanisms of Hg2+ and MeHg in Tetrahymena under Low Concentration Exposure

Distinct Toxicological Characteristics and Mechanisms of Hg2+ and MeHg in Tetrahymena under Low Concentration Exposure
Inorganic divalent mercury complexes (Hg2+) and monomethylmercury complexes (MeHg) are the main mercury species in aquatic systems and their toxicity to aquatic organisms is of great concern. Tetrahymena is a type of unicellular eukaryotic protozoa located at the bottom of food chain that plays a fundamental role in the biomagnification of mercury. In this work, the dynamic accumulation properties, toxicological characteristics and mechanisms of Hg2+ and MeHg in five Tetrahymena species were evaluated in detail. The results showed that both Hg2+ and MeHg were ingested and exhibited inhibitory effects on the proliferation or survival of Tetrahymena species. However, the ingestion rate of MeHg was significantly higher than that of Hg2+. The mechanisms responsible for the toxicity of MeHg and Hg2+ were different, although both chemicals altered mitochondrial membrane potential (MMP). MeHg disrupted the integrity of membranes while Hg2+ had detrimental effects on Tetrahymena as a result of the increased generation of reactive oxygen species (ROS). In addition, the five Tetrahymena species showed different capacities in accumulating Hg2+ and MeHg, with T. corlissi exhibiting the highest accumulations. The study also found significant growth-promoting effect on T. corlissi under low concentration exposure (0.003 and 0.01μg Hg/mL (15 and 50nM)), suggesting different effect and mechanism that should be more closely examined when assessing the bioaccumulation and toxicity of mercury in aquatic ecosystems.

Publisher URL: www.sciencedirect.com/science

DOI: S0166445X17303016

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.