3 years ago

End-to-End Optimized Speech Coding with Deep Neural Networks.

Srihari Kankanahalli

Modern compression algorithms are often the result of laborious domain-specific research; industry standards such as MP3, JPEG, and AMR-WB took years to develop and were largely hand-designed. We present a deep neural network model which optimizes all the steps of a wideband speech coding pipeline (compression, quantization, entropy coding, and decompression) end-to-end directly from raw speech data -- no manual feature engineering necessary, and it trains in hours. In testing, our DNN-based coder performs on par with the AMR-WB standard at a variety of bitrates (~9kbps up to ~24kbps). It also runs in realtime on a 3.8GhZ Intel CPU.

Publisher URL: http://arxiv.org/abs/1710.09064

DOI: arXiv:1710.09064v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.