3 years ago

Decentralized Control of Uncertain Multi-Agent Systems with Connectivity Maintenance and Collision Avoidance.

Alexandros Filotheou, Dimos V. Dimarogonas, Alexandros Nikou

This paper addresses the problem of navigation control of a general class of uncertain nonlinear multi-agent systems in a bounded workspace of $\mathbb{R}^n$ with static obstacles. In particular, we propose a decentralized control protocol such that each agent reaches a predefined position at the workspace, while using only local information based on a limited sensing radius. The proposed scheme guarantees that the initially connected agents remain always connected. In addition, by introducing certain distance constraints, we guarantee inter-agent collision avoidance, as well as, collision avoidance with the obstacles and the boundary of the workspace. The proposed controllers employ a class of Decentralized Nonlinear Model Predictive Controllers (DNMPC) under the presence of disturbances and uncertainties. Finally, simulation results verify the validity of the proposed framework.

Publisher URL: http://arxiv.org/abs/1710.09204

DOI: arXiv:1710.09204v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.