3 years ago

Unsupervised and Semi-supervised Anomaly Detection with LSTM Neural Networks.

Suleyman Serdar Kozat, Tolga Ergen, Ali Hassan Mirza

We investigate anomaly detection in an unsupervised framework and introduce Long Short Term Memory (LSTM) neural network based algorithms. In particular, given variable length data sequences, we first pass these sequences through our LSTM based structure and obtain fixed length sequences. We then find a decision function for our anomaly detectors based on the One Class Support Vector Machines (OC-SVM) and Support Vector Data Description (SVDD) algorithms. As the first time in the literature, we jointly train and optimize the parameters of the LSTM architecture and the OC-SVM (or SVDD) algorithm using highly effective gradient and quadratic programming based training methods. To apply the gradient based training method, we modify the original objective criteria of the OC-SVM and SVDD algorithms, where we prove the convergence of the modified objective criteria to the original criteria. We also provide extensions of our unsupervised formulation to the semi-supervised and fully supervised frameworks. Thus, we obtain anomaly detection algorithms that can process variable length data sequences while providing high performance, especially for time series data. Our approach is generic so that we also apply this approach to the Gated Recurrent Unit (GRU) architecture by directly replacing our LSTM based structure with the GRU based structure. In our experiments, we illustrate significant performance gains achieved by our algorithms with respect to the conventional methods.

Publisher URL: http://arxiv.org/abs/1710.09207

DOI: arXiv:1710.09207v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.