3 years ago

Complete classification for simple root cyclic codes over local rings $\mathbb{Z}_{p^s}[v]/\langle v^2-pv\rangle$.

Yuan Cao, Yonglin Cao

Let $p$ be a prime integer, $n,s\geq 2$ be integers satisfying ${\rm gcd}(p,n)=1$, and denote $R=\mathbb{Z}_{p^s}[v]/\langle v^2-pv\rangle$. Then $R$ is a local non-principal ideal ring of $p^{2s}$ elements. First, the structure of any cyclic code over $R$ of length $n$ and a complete classification of all these codes are presented. Then the cardinality of each code and dual codes of these codes are given. Moreover, self-dual cyclic codes over $R$ of length $n$ are investigated. Finally, we list some optimal $2$-quasi-cyclic self-dual linear codes over $\mathbb{Z}_4$ of length $30$ and extremal $4$-quasi-cyclic self-dual binary linear $[60,30,12]$ codes derived from cyclic codes over $\mathbb{Z}_{4}[v]/\langle v^2+2v\rangle$ of length $15$.

Publisher URL: http://arxiv.org/abs/1710.09236

DOI: arXiv:1710.09236v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.