3 years ago

A Contractive Approach to Separable Lyapunov Functions for Monotone Systems.

Samuel Coogan

Monotone systems preserve a partial ordering of states along system trajectories and are often amenable to separable Lyapunov functions that are either the sum or the maximum of a collection of functions of a scalar argument. In this paper, we consider constructing separable Lyapunov functions for monotone systems that are also contractive, that is, the distance between any pair of trajectories exponentially decreases. The distance is defined in terms of a possibly state-dependent norm. When this norm is a weighted one-norm, we obtain conditions which lead to sum-separable Lyapunov functions, and when this norm is a weighted infinity-norm, symmetric conditions lead to max-separable Lyapunov functions. In addition, we consider two classes of Lyapunov functions: the first class is separable along the system's state, and the second class is separable along components of the system's vector field. The latter case is advantageous for many practically motivated systems for which it is difficult to measure the system's state but easier to measure the system's velocity or rate of change. In addition, we present an algorithm based on sum-of-squares programming to compute such separable Lyapunov functions. We provide several examples to demonstrate our results.

Publisher URL: http://arxiv.org/abs/1704.04218

DOI: arXiv:1704.04218v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.