3 years ago

Enantioselective Recognition of Ammonium Carbamates in a Chiral Metal–Organic Framework

Enantioselective Recognition of Ammonium Carbamates in a Chiral Metal–Organic Framework
Jochen Autschbach, Phillip J. Milner, Rebecca L. Siegelman, Jiawei Xu, Miguel I. Gonzalez, Jeffrey R. Long, Julia Oktawiec, Jeffrey A. Reimer, Monika Srebro-Hooper, Alexander C. Forse, Jeffrey D. Martell, Kristen A. Colwell, Tomče Runčevski, Leo B. Porter-Zasada
Chiral metal–organic frameworks have attracted interest for enantioselective separations and catalysis because of their high crystallinity and pores with tunable shapes, sizes, and chemical environments. Chiral frameworks of the type M2(dobpdc) (M = Mg, Mn, Fe, Co, Ni, Zn; dobpdc4– = 4,4′-dioxidobiphenyl-3,3′-dicarboxylate) seem particularly promising for potential applications because of their excellent stability, high internal surface areas, and strongly polarizing open metal coordination sites within the channels, but to date these materials have been isolated only in racemic form. Here, we demonstrate that when appended with the chiral diamine trans-1,2-diaminocyclohexane (dach), Mg2(dobpdc) adsorbs carbon dioxide cooperatively to form ammonium carbamate chains, and the thermodynamics of CO2 capture are strongly influenced by enantioselective interactions within the chiral pores of the framework. We further show that it is possible to access both enantiomers of Mg2(dobpdc) with high enantiopurity (≥90%) via framework synthesis in the presence of varying quantities of d-panthenol, an inexpensive chiral induction agent. Investigation of dach–M2(dobpdc) samples following CO2 adsorption—using single-crystal and powder X-ray diffraction, solid-state nuclear magnetic resonance spectroscopy, and density functional theory calculations—revealed that the ammonium carbamate chains interact extensively with each other and with the chiral M2(dobpdc) pore walls. Subtle differences in the non-covalent interactions accessible in each diastereomeric phase dramatically impact the thermodynamics of CO2 adsorption.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b09983

DOI: 10.1021/jacs.7b09983

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.