3 years ago

Nitrogenase Cofactor Assembly: An Elemental Inventory

Nitrogenase Cofactor Assembly: An Elemental Inventory
Nathaniel S. Sickerman, Markus W. Ribbe, Yilin Hu
Nitrogenase is known for its remarkable ability to catalyze the reduction of N2 to NH3, and C1 substrates to short-chain hydrocarbon products, under ambient conditions. The best-studied Mo-nitrogenase utilizes a complex metallocofactor as the site of substrate binding and reduction. Designated the M-cluster, this [MoFe7S9C(R-homocitrate)] cluster can be viewed as [MoFe3S3] and [Fe4S3] subclusters bridged by three μ2-sulfides and one μ6-interstitial carbide, with its Mo end further coordinated by an R-homocitrate moiety. The unique cofactor has attracted considerable attention ever since its discovery; however, the complexity of its structure has hindered mechanistic understanding and chemical synthesis of this cofactor. Motivated by the pressing questions related to the structure and function of the nitrogenase cofactor, one major thrust of our research has been to unravel the key biosynthetic steps of this metallocluster to cultivate a deeper understanding of these reactions and their effects on functionalizing the cofactor.

Publisher URL: http://dx.doi.org/10.1021/acs.accounts.7b00417

DOI: 10.1021/acs.accounts.7b00417

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.