3 years ago

Oligomerization Alters Binding Affinity between Amyloid Beta and a Modulator of Peptide Aggregation

Oligomerization Alters Binding Affinity between Amyloid Beta and a Modulator of Peptide Aggregation
Tapani Viitala, Sebastian Wachsmann-Hogiu, John C. Voss, Tamás Kálai, Alex Bunker, Silvia Hilt, Artturi Koivuniemi, Kálmán Hideg, Marjo Yliperttula, Tatu Rojalin
The soluble oligomeric form of the amyloid beta (Aβ) peptide is the major causative agent in the molecular pathogenesis of Alzheimer’s disease (AD). We have previously developed a pyrroline-nitroxyl fluorene compound (SLF) that blocks the toxicity of Aβ. Here we introduce the multiparametric surface plasmon resonance (MP-SPR) approach to quantify SLF binding and its effect on the self-association of the peptide via a label-free, real-time approach. Kinetic analysis of SLF binding to Aβ and measurements of layer thickness alterations inform on the mechanism underlying the ability of SLF to inhibit Aβ toxicity and its progression toward larger oligomeric assemblies. Depending on the oligomeric state of Aβ, distinct binding affinities for SLF are revealed. The Aβ monomer and dimer uniquely possess subnanomolar affinity for SLF via a nonspecific mode of binding. SLF binding is weaker in oligomeric Aβ, which displays an affinity for SLF on the order of 100 μM. To complement these experiments we carried out molecular docking and molecular dynamics simulations to explore how SLF interacts with the Aβ peptide. The MP-SPR results together with in silico modeling provide affinity data for the SLF-Aβ interaction and allow us to develop a new general method for examining protein aggregation.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b06164

DOI: 10.1021/acs.jpcc.7b06164

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.