3 years ago

Investigation of the Effect of Nanosilica on Rheological, Thermal, Mechanical, Structural, and Piezoelectric Properties of Poly(vinylidene fluoride) Nanofibers Fabricated Using an Electrospinning Technique

Investigation of the Effect of Nanosilica on Rheological, Thermal, Mechanical, Structural, and Piezoelectric Properties of Poly(vinylidene fluoride) Nanofibers Fabricated Using an Electrospinning Technique
Seyyedfaridoddin Fattahpour, Ahmad Ramazani S. A., Soroush Talebi, Masoud Hasany, Seyyed Arash Haddadi
The effects of different nano-SiO2 contents on the rheological properties of poly(vinylidene fluoride) (PVDF) solution and mechanical, thermal, structural, and piezoelectric properties of composite nanofibers were investigated. Results showed an increase in fiber diameter (∼125 to 350 nm) and ∼450% increase in tensile strength as the content of nano-SiO2 particles increased. The degree of crystallinity decreased by 19% as the nano-SiO2 content increased by 2% (w/w). Further investigation demonstrated that silica could significantly improve the piezoelectric properties of PVDF nanofibers as the output voltage showed an increase in the presence of silica attributed to change in the crystalline structure of PVDF.

Publisher URL: http://dx.doi.org/10.1021/acs.iecr.7b02622

DOI: 10.1021/acs.iecr.7b02622

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.