3 years ago

IL6 blockade potentiates the anti-tumor effects of γ-secretase inhibitors in Notch3-expressing breast cancer

Lei Zhou, Xiaojun Xu, Xin Hu, Xueyan He, Dong Wang, Suling Liu, Max S Wicha, Huafeng Zhang, Anli Zhang, Zhi-ming Shao, Lixing Zhang, Jiahui Xu, Feng Qiao, Bingjie Liu

Notch pathways have important roles in carcinogenesis including pathways involving the Notch1 and Notch2 oncogenes. Pan-Notch inhibitors, such as gamma secretase inhibitors (GSIs), have been used in the clinical trials, but the outcomes of these trials have been insufficient and have yielded unclear. In the present study, we demonstrated that GSIs, such as MK-0752 and RO4929097, inhibit breast tumor growth, but increase the breast cancer stem cell (BCSC) population in Notch3-expressing breast cancer cells, in a process that is coupled with IL6 induction and is blocked by the IL6R antagonist Tocilizumab (TCZ). IL6 induction results from inhibition of Notch3-Hey2 signaling through MK-0752. Furthermore, HIF1α upregulates Notch3 expression via direct binding to the Notch3 promoter and subsequently downregulates BCSCs by decreasing the IL6 levels in Notch3-expressing breast cancer cells. Utilizing both breast cancer cell line xenografts and patient-derived xenografts (PDX), we showed that the combination of MK-0752 and Tocilizumab significantly decreases BCSCs and inhibits tumor growth and thus might serve as a novel therapeutic strategy for treating women with Notch3-expressing breast cancers.

Publisher URL: https://www.nature.com/articles/cdd2017162

DOI: 10.1038/cdd.2017.162

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.