3 years ago

Mechanisms of aortic dissection smooth muscle cell phenotype switch

To investigate the expression of Nanog homeobox (NANOG) in thoracic aortic dissection (TAD) and the role of NANOG in regulating human aortic vascular smooth muscle cells (VSMCs) phenotype switch. Methods Aortic specimens were collected from 20 patients undergoing TAD and 10 controls. VSMCs were isolated by adherent cultivation approach. The expression of NANOG, osteopontin (OPN), and VSMCs phenotype markers were determined by quantitative real-time polymerase chain reaction, Western blot, immunohistochemistry, and immunofluorescence. Cell counting, scratch wound-healing assay, Transwell migration, and apoptosis assays were used for cell function assessment. Deoxyribonucleic acid–protein binding detection was performed by chromatin immunoprecipitation. Results Our experiment results showed that NANOG and OPN were highly expressed in TAD aortic wall and VSMCs, both accompanying VSMCs phenotype switch. Overexpression of NANOG induced the up-regulation of VSMCs synthetic marker matrix metalloproteinase 2 and the down-regulation of VSMCs contractile markers α-smooth muscle actin and smooth muscle 22α. Overexpression of NANOG also enhanced the proliferation, migration, and antiapoptosis capabilities of VSMCs. The results also showed that these functions of NANOG was via OPN and NANOG directly up-regulated OPN by binding to its promoter region. Conclusions Our study suggests that NANOG is highly expressed in TAD aortic wall and VSMCs. Increased NANOG promotes VSMCs phenotype switch by directly up-regulating OPN through binding to its promoter region.

Publisher URL: www.sciencedirect.com/science

DOI: S0022522317311194

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.