3 years ago

Zero-Order Versus Intrinsic Kinetics for the Determination of the Time to Maximum Rate under Adiabatic Conditions (TMRad): Application to the Decomposition of Hydrogen Peroxide

Zero-Order Versus Intrinsic Kinetics for the Determination of the Time to Maximum Rate under Adiabatic Conditions (TMRad): Application to the Decomposition of Hydrogen Peroxide
Amine Dakkoune, Lamiae Vernières-Hassimi, Sébastien Leveneur, Lokmane Abdelouahed, Lionel Estel
The thermal safety of chemical processes requires knowledge of the safety parameters that quantify the probability, such as time to maximum rate under adiabatic conditions (TMRad), and the severity, such as adiabatic temperature rise under adiabatic conditions (ΔTad). The zero-order approximation is used to ease the determination of TMRad values at different process temperatures; but how can one be sure that this approximation is acceptable, compared to the use of an intrinsic kinetic model? In the literature, there are no such studies that compare the values of TMRad by using zero-order and intrinsic kinetic models. For that, decomposition of hydrogen peroxide in the presence (and in the absence) of copper sulfate was studied in an advanced reactive system screening tool (ARSST) unit. This calorimeter operates under near-adiabatic conditions, based on heat loss compensation principle, and by using a background heating rate (β). In a first stage, a kinetic model was built to estimate the intrinsic kinetic constants. Then, a comparison between the values of TMRad from the zero-order and the intrinsic kinetic model was performed. It was found that the difference of TMRad values obtained by these two models can be significant. The influence of β and reactant concentrations were found to play an important role in this difference. As good practice, in the case of missing kinetic and thermodynamic data, a user should test different background heating rates to verify their influence on TMRad values obtained from the zero-order model.

Publisher URL: http://dx.doi.org/10.1021/acs.iecr.7b01291

DOI: 10.1021/acs.iecr.7b01291

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.