3 years ago

Coagulation of surface water: Observations on the significance of biopolymers

Coagulation of surface water: Observations on the significance of biopolymers
Although the treatment of natural surface waters by coagulation has been investigated extensively, the detailed interaction between natural organic matter and alum is still not adequately understood or predictable, owing to the complexity of different components of the organic matrix and the conditions during coagulation. In this paper, we present the results of a novel approach to the study of the topic, which involved the progressive separation of organic components according to size, followed by coagulation of the filtrate solution, in order to expose the influence of particular organic fractions. Using two natural water sources, representative of lake and river waters, solutions of different organic content were obtained by progressively filtering the source waters using membranes of decreasing pore size; viz. microfiltration (MF), ultrafiltration (UF), and two grades of nanofiltration (NF). While MF had little impact on the range of organics present, UF was able to separate biopolymers (MW > 100 kDa), and NF had a substantially impact on the separation of medium-high MW (1–10 kDa) substances. The results of the coagulation tests showed that the size of flocs was substantially greater when biopolymers were present, suggesting their beneficial role in bridging precipitated Al(OH)3 nanoparticles. For the smaller organic fractions (<10 kDa), the results showed a trend of increasing floc size with decreasing organic MW and concentration, but the trend was minor and may be explained by charge effects. Very similar results were found with both water sources, which support the main finding that biopolymers have an important influence on floc formation.

Publisher URL: www.sciencedirect.com/science

DOI: S0043135417307765

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.