3 years ago

Multiple Random Forests Modelling for Urban Water Consumption Forecasting

Tianyu Long, Yun Bai, Guoqiang Chen, Jiangong Xiong


The precise forecasting of water consumption is the basis in water resources planning and management. However, predicting water consumption fluctuations is complicated, given their non-stationary and non-linear characteristics. In this paper, a multiple random forests model, integrated wavelet transform and random forests regression (W-RFR), is proposed for the prediction of daily urban water consumption in southwest of China. Raw time series were first decomposed into low- and high-frequency parts with discrete wavelet transformation (DWT). The random forests regression (RFR) method was then used for prediction using each subseries. In the process, the input and output constructions of the RFR model were proposed for each subseries on the basis of the delay times and the embedding dimension of the attractor reconstruction computed by the C-C method, respectively. The forecasting values of each subseries were summarized as the final results. Four performance criteria, i.e., correlation coefficient (R), mean absolute percentage error (MAPE), normalized root mean square error (NRMSE) and threshold static (TS), were used to evaluate the forecasting capacity of the W-RFR. The results indicated that the W-RFR can capture the basic dynamics of the daily urban water consumption. The forecasted performance of the proposed approach was also compared with those of models, i.e., the RFR and forward feed neural network (FFNN) models. The results indicated that among the models, the precision of the predictions of the proposed model was greater, which is attributed to good feature extractions from the multi-scale perspective and favorable feature learning performance using the decision trees.

Publisher URL: https://link.springer.com/article/10.1007/s11269-017-1774-7

DOI: 10.1007/s11269-017-1774-7

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.