3 years ago

Simulation of Nonstationary Spring Discharge Using Time Series Models

Y. Fan, Y. Liu, B. Wang, H. Zhan, Y. Zha, Y. Hao

Abstract

We present a detailed analysis and comparison of two time series models, i.e., ARIMA and ARIMA-GARCH, to simulate the discharge of a karst spring (Niangziguan Springs (NS) complex) in the northern China. Statistical tests for the residuals are applied to examine the reasonability of the models. Statistically, both models are reasonably good to simulate the mean value of the discharge of the NS complex. The statistical test shows that the residual discharge data have conditional time-varying variance and volatility clustering, known as heteroscedasticity of the data. Calibration test shows that the ARIMA-GARCH model gives a varying confidence interval, which can more effectively capture the heteroscedasticity of the data, comparing with a constant confidence interval in the ARIMA model. In the validation and application process, we applied two approaches to simulate the discharge data: (1) fixed models, and (2) evolving models. The confidence interval width monotonically increases in both fixed models, and the fixed ARIMA-GARCH model has faster increasing confidence interval width than the fixed ARIMA model. This suggests that the fixed time series models are only suitable for short-term prediction. However, we found that this drawback can be compensated by updating the model once new data become available. Our evolving models show more reasonable confidence interval width for both models. In addition, the application shows that the ARIMA-GARCH model is very sensitive to the data fluctuation. We also found the evolving ARIMA-GARCH model was able to return to the narrow confidence interval width once the fluctuation diminished. Hence, we conclude that the ARIMA-GARCH model is more suitable for the sequences with strong heteroscedasticity.

Publisher URL: https://link.springer.com/article/10.1007/s11269-017-1783-6

DOI: 10.1007/s11269-017-1783-6

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.