3 years ago

Calibration via Multi-period State Estimation in Water Distribution Systems

Javier González, Sarai Díaz, Roberto Mínguez


Calibration of model parameters is of utmost importance to ensure the good performance of hydraulic simulation models. In this work, calibration is conceived within a joint multi-period parameter and state estimation approach, where model parameters (i.e. roughness coefficients) and hydraulic variables should be computed from available measurements at different times. The aim of this paper is twofold: (1) to present a novel methodology for the calibration of water networks via multi-period state estimation, and (2) to adapt observability analysis to this approach. The novelty of this work is that such a large-scale non-linear optimisation problem is here solved using mathematical programming decomposition techniques. On the other hand, observability analysis requires the construction of the multi-period measurement and parameter Jacobian matrix of the problem. The proposed approach enables computation of the observable roughness coefficients from available readings over time, making possible the periodic reassessment of roughness values based on recent online measurements. The potential of the method is illustrated by means of a case study, which shows how such a methodology would contribute to make the most of telemetry data for calibration purposes.

Publisher URL: https://link.springer.com/article/10.1007/s11269-017-1779-2

DOI: 10.1007/s11269-017-1779-2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.