3 years ago

Estimate of Suspended Sediment Concentration from Monitored Data of Turbidity and Water Level Using Artificial Neural Networks

Vanessa Sari, Olavo Correa Pedrollo, Nilza Maria dos Reis Castro


Artificial neural networks (ANNs) are promising alternatives for the estimation of suspended sediment concentration (SSC), but they are dependent on the availability data. This study investigates the use of an ANN model for forecasting SSC using turbidity and water level. It is used an original method, idealized to investigate the minimum complexity of the ANN that does not present, in relation to more complex networks, loss of efficiency when applied to other samples, and to perform its training avoiding the overfitting even when data availability is insufficient to use the cross-validation technique. The use of a validation procedure by resampling, the control of overfitting through a previously researched condition of training completion, as well as training repetitions to provide robustness are important aspects of the method. Turbidity and water level data, related to 59 SSC values, collected between June 2013 and October 2015, were used. The development of the proposed ANN was preceded by the training of an ANN, without the use of the new resources, which clearly showed the overfitting occurrence when resources were not used to avoid it, with Nash-Sutcliffe efficiency (NS) equals to 0.995 in the training and NS = 0.788 in the verification. The proposed method generated efficient models (NS = 0.953 for verification), with well distributed errors and with great capacity of generalization for future applications. The final obtained model enabled the SSC calculation, from water level and turbidity data, even when few samples were available for the training and verification procedures.

Publisher URL: https://link.springer.com/article/10.1007/s11269-017-1785-4

DOI: 10.1007/s11269-017-1785-4

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.