3 years ago

Direct syngas conversion to liquefied petroleum gas: Importance of a multifunctional metal-zeolite interface

Direct syngas conversion to liquefied petroleum gas: Importance of a multifunctional metal-zeolite interface
It is challenging to fabricate a multifunctional catalyst for consecutively catalyzing multiple reactions. Herein, we report a well-defined metal-zeolite interface derived from a CuZnAl@H-Beta core@shell catalyst to realize one-step syngas conversion to liquefied petroleum gas (LPG). The multifunctional interface between CuZnAl core and H-Beta zeolite shell is composed of Cu and acid zeolite with a content gradient, through which synthesized methanol via syngas on the core will pass. The interface is able to catalyze the tandem dehydration of methanol to olefins on acid sites and olefin hydrogenation to C3–4 saturated hydrocarbons (LPG fraction) over exposed Cu sites on the interface instead of noble metals in conventional catalysts. The selectivity of LPG in hydrocarbons over the prepared capsule catalyst reaches as high as 77% accompanied by a record low methane and C2 selectivity (<2.0%).

Publisher URL: www.sciencedirect.com/science

DOI: S0306261917314897

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.