5 years ago

Asymmetric Conformational Transitions in AAA+ Biological Nanomachines Modulate Direction-Dependent Substrate Protein Unfolding Mechanisms

Asymmetric Conformational Transitions in AAA+ Biological Nanomachines Modulate Direction-Dependent Substrate Protein Unfolding Mechanisms
George Stan, Abdolreza Javidialesaadi
Powerful AAA+ biological nanomachines, such as ClpY, form hexameric ring structures, which selectively process abnormal proteins targeted for degradation by unfolding and threading them through a narrow central channel. The molecular details of this process are not yet fully understood. We perform Langevin dynamics simulations using a coarse-grained model of substrate proteins (SPs), Titin I27 and its V13P variant, threading through the ClpY pore. We probe the effect of ClpY surface heterogeneity and changes in pore width on SP orientation and the direction of applied force during SP unfolding. We contrast mechanisms of SP unfolding in a restrained geometry, as in single-molecule force spectroscopy experiments, and in an unrestrained geometry, as in the in vivo degradation process. In open pore configurations, unfolding of unrestrained SPs occurs via an unzipping mechanism, which involves force application along a weak mechanical direction. In the partially closed pore, unfolding occurs via a shearing mechanism, with force application along a strong mechanical direction. By contrast, unfolding of the restrained I27 is limited to a shearing mechanism due to application of force along the strong mechanical direction. We propose that Clp nanomachine plasticity underlies direction-dependent pulling mechanisms that enable versatile SP remodeling actions.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcb.7b05963

DOI: 10.1021/acs.jpcb.7b05963

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.