3 years ago

Two small molecular propellers and their rotational potential energy surfaces

Ryan C. Fortenberry, M. Owen Hurst


Molecular propellers based upon the twisting of a disulfide bond are analyzed here as the locomotion source for fullerene nanoparticles. The HC(CCHSSHCC)3CH and related HC(CCHSSNC)3CH bicyclic compounds are optimized and linked to pyracyclene functioning as a model fullerene surface. It is shown that steric hinderance from the hydrogen atoms on both the bottom of the propeller blade and the linker to the fullerene surface can have significant effects on the rotational potential energy surface. Replacing the bottom CH groups on the molecular propeller with nitrogen atoms not only reduces these barriers significantly, but this action creates a strongly dipolar molecule in HC(CCHSSNC)3CH. Such a system would be responsive to and controllable with an external, rotating, magnetic or electric field. Endohedral fullerenes have known applications for targeted delivery, especially in nanomedicine. Providing further control with molecular propellers could enhance the feasibility and use of these technologies.

Publisher URL: https://link.springer.com/article/10.1007/s11224-017-0931-1

DOI: 10.1007/s11224-017-0931-1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.