3 years ago

Exploration of Stable Strontium Phosphide-Based Electrides: Theoretical Structure Prediction and Experimental Validation

Exploration of Stable Strontium Phosphide-Based Electrides: Theoretical Structure Prediction and Experimental Validation
Hidenori Hiramatsu, Junjie Wang, Hideo Hosono, Tomofumi Tada, Koki Iwanaka, Junghwan Kim, Kota Hanzawa, Naoto Umezawa
Inspired by the successful synthesis of alkaline-earth-metals-based electrides [Ca24Al28O64]4+(e)4 (C12A7:e) and [Ca2N]+:e and high-throughput database screening results, we explore the potential for new electrides to emerge in the Sr–P system through a research approach combining ab initio evolutionary structure searches and experimental validation. Through employing an extensive evolutionary structure search and first-principles calculations, we first predict the new structures of a series of strontium phosphides: Sr5P3, Sr8P5, Sr3P2 and Sr4P3. Of these structures, we identify Sr5P3 and Sr8P5 as being potential electrides with quasi-one-dimensional (1D) and zero-dimensional (0D) character, respectively. Following these theoretical results, we present the successful synthesis of the new compound Sr5P3 and the experimental confirmation of its structure. Although density functional calculations with the generalized gradient approximation predict Sr5P3 to be a metal, electrical conductivity measurement reveal semiconducting properties characterized by a distinct band gap, which indicates that the newly synthesized Sr5P3 is an ideal one-dimensional electride with the half-filled band by unpaired electrons. In addition to presenting the novel electride Sr5P3, we discuss the implications of its semiconducting nature for 1D electrides in general and propose a mechanism for the formation of electrides with an orbital level diagram based on first-principles calculations.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b06279

DOI: 10.1021/jacs.7b06279

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.