3 years ago

Improving Water-Treatment Performance of Zirconium Metal-Organic Framework Membranes by Postsynthetic Defect Healing

Improving Water-Treatment Performance of Zirconium Metal-Organic Framework Membranes by Postsynthetic Defect Healing
Yuhong Qian, Zhigang Hu, Xuerui Wang, Yi Di Yuan, Xuehong Gu, Ruitong Li, Yuxiang Wang, Linzhi Zhai, Dan Zhao
Microporous metal-organic frameworks (MOFs) as building materials for molecular sieving membranes offer unique opportunities to tuning the pore size and chemical property. The recently reported polycrystalline Zr-MOF membranes have greatly expanded their applications from gas separation to water treatment. However, Zr-MOFs are notoriously known for their intrinsic defects caused by ligand/cluster missing, which may greatly affect the molecular sieving property of Zr-MOF membranes. Herein, we present the mitigation of ligand-missing defects in polycrystalline UiO-66(Zr)-(OH)2 membranes by postsynthetic defect healing (PSDH), which can help in increasing the membranes’ Na+ rejection rate by 74.9%. Intriguingly, the membranes also exhibit excellent hydrothermal stability in aqueous solutions (>600 h). Our study proves the feasibility of PSDH in improving the performance of polycrystalline Zr-MOF membranes for water-treatment applications.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b12750

DOI: 10.1021/acsami.7b12750

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.