3 years ago

Development of Sphere-Polymer Brush Hierarchical Nanostructure Substrates for Fabricating Microarrays with High Performance

Development of Sphere-Polymer Brush Hierarchical Nanostructure Substrates for Fabricating Microarrays with High Performance
Zhenxin Wang, Xia Liu, Dianjun Liu, Rongrong Tian
In this work, a sphere-polymer brush hierarchical nanostructure-modified glass slide has been developed for fabricating high-performance microarrays. The substrate consists of a uniform 160 nm silica particle-self-assembled monolayer on a glass slide with a postcoated poly(glycidyl methacrylate) (PGMA) brush layer (termed PGMA@3D(160) substrate), which can provide three-dimensional (3D) polymer brushes containing abundant epoxy groups for directly immobilizing various biomolecules. As a typical example, the interactions of three monosaccharides (4-aminophenyl β-d-galactopyranoside, 4-aminophenyl β-d-glucopyranoside, and 4-aminophenyl α-d-mannopyranoside) with two lectins (biotinylated ricinus communis agglutinin 120 and biotinylated concanavalin A from Canavalia ensiformis) have been assessed by PGMA@3D(160) substrate-based carbohydrate microarrays. The carbohydrate microarrays show good selectivity, strong multivalent interaction, and low limit of detection (LOD) in the picomolar range without any signal amplification. Furthermore, the proposed sphere-polymer brush hierarchical nanostructure substrates can be easily extended to fabricate other types of microarrays for DNA and protein detection. PGMA@3D(160) substrate-based microarrays exhibit higher reaction efficiencies and lower LODs (by at least 1 order of magnitude) in comparison to those of two-dimensional microarrays, which are fabricated on planar epoxy substrates, making it a promising platform for bioanalytical and biomedical applications.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b09505

DOI: 10.1021/acsami.7b09505

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.