3 years ago

Preparation of a Sulfur-Functionalized Microporous Polymer Sponge and In Situ Growth of Silver Nanoparticles: A Compressible Monolithic Catalyst

Preparation of a Sulfur-Functionalized Microporous Polymer Sponge and In Situ Growth of Silver Nanoparticles: A Compressible Monolithic Catalyst
Ji Young Chang, Jeongmin Lee, Taejin Choi, Min Chul Cha, Jong Gil Kim
We report a compressible monolithic catalyst based on a microporous organic polymer (MOP) sponge. The monolithic MOP sponge was synthesized via Sonogashira-Hagihara coupling reaction between 1,4-diiodotetrafluorobenzene and 1,3,5-triethynylbenzene in a cosolvent of toluene and TEA (2:1, v/v) without stirring. The MOP sponge had an intriguing microstructure, where tubular polymer fibers having a diameter of hundreds of nanometers were entangled. It showed hierarchical porosity with a Brunauer–Emmett–Teller (BET) surface area of 512 m2 g–1. The MOP sponge was functionalized with sulfur groups by the thiol–yne reaction. The functionalized MOP sponge exhibited a higher BET surface area than the MOP sponge by 13% due to the increase in the total pore and micropore volumes. A MOP sponge-Ag heterogeneous catalyst (S-MOPS-Ag) was prepared by in situ growth of silver nanoparticles inside the sulfur-functionalized MOP sponge by the reduction of Ag+ ions. The catalytic activity of S-MOPS-Ag was investigated for the reduction reaction of 4-nitrophenol in an aqueous condition. When S-MOPS-Ag was compressed and released during the reaction, the rate of the reaction was considerably increased. S-MOPS-Ag was easily removed from the reaction mixture owing to its monolithic character and was reused after washing and drying.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b14807

DOI: 10.1021/acsami.7b14807

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.