3 years ago

Charge Transfer in Ultrafine LDH Nanosheets/Graphene Interface with Superior Capacitive Energy Storage Performance

Charge Transfer in Ultrafine LDH Nanosheets/Graphene Interface with Superior Capacitive Energy Storage Performance
Yanmei Li, Yingchang Jiang, Qinfen Gu, Yun Song, Peiyu Yang, Zhichang Pan, Wenchao Tian, Yuesheng Li, Linfeng Hu
Two-dimensional LDH nanosheets recently have generated considerable interest in various promising applications because of their intriguing properties. Herein, we report a facile in situ nucleation strategy toward in situ decorating monodispersed Ni–Fe LDH ultrafine nanosheets (UNs) on graphene oxide template based on the precise control and manipulation of LDH UNs anchored, nucleated, grown, and crystallized. Anion-exchange behavior was observed in this Ni–Fe LDH UNs@rGO composite. The Ni–Fe LDH UNs@rGO electrodes displayed a significantly enhanced specific capacitance (2715F g–1 at 3 A g–1) and energy density (82.3 Wh kg–1 at 661 W kg–1), which exceeds the energy densities of most previously reported nickel iron oxide/hydroxides. Moreover, the asymmetric supercapacitor, with the Ni–Fe LDH UNs @rGO composite as the positive electrode material and reduced graphene oxide (rGO) as the negative electrode material, exhibited a high energy density (120 Wh kg –1) at an average power density of 1.3 kW kg –1. A charge transfer from LDH layer to graphene layer, which means a built in electric field directed from LDH to graphene can be established by DFT calculations, which can significantly accelerate reaction kinetics and effectively optimize the capacitive energy storage performance.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b09373

DOI: 10.1021/acsami.7b09373

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.