3 years ago

Functionalized Carbon Nanotubes with Ni(II) Bipyridine Complexes as Efficient Catalysts for the Alkaline Oxygen Evolution Reaction

Functionalized Carbon Nanotubes with Ni(II) Bipyridine Complexes as Efficient Catalysts for the Alkaline Oxygen Evolution Reaction
Tanja Kallio, Mohammad Tavakkoli, Kari Laasonen, Jani Sainio, Pekka M Joensuu, Fatemeh Davodi, Magdalena Nosek
Among current technologies for hydrogen production as an environmentally friendly fuel, water splitting has attracted increasing attention. However, the efficiency of water electrolysis is severely limited by the large anodic overpotential and sluggish reaction rate of the oxygen evolution reaction (OER). To overcome this issue, the development of efficient electrocatalyst materials for the OER has drawn much attention. Here, we show that organometallic Ni(II) complexes immobilized on the sidewalls of multiwalled carbon nanotubes (MWNTs) serve as highly active and stable OER electrocatalysts. This class of electrocatalyst materials is synthesized by covalent functionalization of the MWNTs with organometallic Ni bipyridine (bipy) complexes. The Ni-bipy-MWNT catalyst generates a current density of 10 mA cm–2 at overpotentials of 310 and 290 mV in 0.1 and 1 M NaOH, respectively, with a low Tafel slope of ∼35 mV dec–1, placing the material among the most active OER electrocatalysts reported so far. Different simple analysis techniques have been developed in this study to characterize such a class of electrocatalyst materials. Furthermore, density functional theory calculations have been performed to predict the stable coordination complexes of Ni before and after OER measurements.

Publisher URL: http://dx.doi.org/10.1021/acscatal.7b02878

DOI: 10.1021/acscatal.7b02878

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.