3 years ago

Mechanism of the Mn Promoter via CoMn Spinel for Morphology Control: Formation of Co2C Nanoprisms for Fischer–Tropsch to Olefins Reaction

Mechanism of the Mn Promoter via CoMn Spinel for Morphology Control: Formation of Co2C Nanoprisms for Fischer–Tropsch to Olefins Reaction
Yuanyuan Dai, Fei Yu, Zhengjia Li, Yuhan Sun, Shenggang Li, Peng Gao, Yunlei An, Hui Wang, Liangshu Zhong, Mingyuan He, Tiejun Lin
The Fischer–Tropsch to olefins (FTO) reaction over Co2C catalysts is structure-sensitive, as the catalytic performance is strongly influenced by the surface structure of the active phase. The exposed facets determine the surface structure, and it remains a great challenge to precisely control the particle morphology of the FTO active phase. In this study, the controlling effect of the Mn promoter on the final morphology of the Co2C nanoparticles for the FTO reaction was investigated. The unpromoted catalyst and several promoted catalysts with Ce, La, and Al were also studied for comparison. For the Mn-promoted catalysts, the combination method of the Co and Mn components plays a crucial role in the final morphology of Co2C and thus the catalytic performance. For the CoMn catalyst prepared by coprecipitation, Co2C nanoprisms with specifically exposed facets of (101) and (020) can be obtained, which exhibit a promising FTO catalytic performance with high C2–4= selectivity, low methane selectivity, and high activity under mild reaction conditions. However, for the Mn/Co catalyst prepared via impregnation, Co2C nanospheres are formed, which exhibit high methane selectivity, low C2–4= selectivity, and low activity. For the unpromoted catalyst and the catalysts promoted by Ce and La, Co2C nanospheres are also obtained, with catalytic performance similar to that of the Mn/Co catalyst prepared via impregnation. Due to the high stability of the Co2AlOx composite oxide, no Co2C phase can be formed for the catalyst promoted by Al.

Publisher URL: http://dx.doi.org/10.1021/acscatal.7b02144

DOI: 10.1021/acscatal.7b02144

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.