5 years ago

Nanoscale Bandgap Tuning across an Inhomogeneous Ferroelectric Interface

Nanoscale Bandgap Tuning across an Inhomogeneous Ferroelectric Interface
Ce-Wen Nan, Jing Wang, Danni Yang, Jinxing Zhang, Xingqiao Ma, Qinghua Zhang, Longqing Chen, Lin Gu, Chuanshou Wang, Yuelin Zhang, Wangqiang He, Houbing Huang, Renrong Liang
We report nanoscale bandgap engineering via a local strain across the inhomogeneous ferroelectric interface, which is controlled by the visible-light-excited probe voltage. Switchable photovoltaic effects and the spectral response of the photocurrent were explored to illustrate the reversible bandgap variation (∼0.3 eV). This local-strain-engineered bandgap has been further revealed by in situ probe-voltage-assisted valence electron energy-loss spectroscopy (EELS). Phase-field simulations and first-principle calculations were also employed for illustration of the large local strain and the bandgap variation in ferroelectric perovskite oxides. This reversible bandgap tuning in complex oxides demonstrates a framework for the understanding of the optically related behaviors (photovoltaic, photoemission, and photocatalyst effects) affected by order parameters such as charge, orbital, and lattice parameters.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b05138

DOI: 10.1021/acsami.7b05138

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.