3 years ago

Origin of Structural Evolution in Capacity Degradation for Overcharged NMC622 via Operando Coupled Investigation

Origin of Structural Evolution in Capacity Degradation for Overcharged NMC622 via Operando Coupled Investigation
Yue-Feng Xu, Shou-Yu Shen, Chong-Heng Shen, Qi Wang, Jun-Tao Li, Ling Huang, Shi-Gang Sun, Chen-Guang Shi
The nickel-rich layered oxide materials have been selected as promising cathode materials for the next generation lithium ion batteries because of their large capacity and comparably high operating voltage. However, at high voltage (beyond 4.30 V vs Li/Li+), the members of this family are all suffering from a rapid capacity decay, which was commonly concerned with crystal lattice distortion and related cation disordering. In this work, the quasi-spherical Ni-rich layered LiNi0.6Co0.2Mn0.2O2 (QS-NMC622) material was successfully synthesized through the carbonate co-precipitation method. A coupled measurement, which is a combination of potentiostatic intermittent titration technique (PITT) and in situ X-ray diffraction (XRD), was deployed to simultaneously capture the structural changes and lithium ion diffusion coefficient of QS-NMC622 material during the first cycle. With help of in situ XRD patterns and high-resolution transmission electron microscope (HR-TEM) images, a defective spinel framework of Fdm space group was detected along with a rapid decreasing lattice-parameter c and lattice distortion at deep delithiated state, which causes poor kinetics related to lithium ion mobility. The new-born framework seems to transform and remain as full spinel structure in the parent phase to the end of charge/discharge with high voltage, which could deteriorate both the surface and body structure stability during the subsequent cycles. This established coupled in situ measurement could be applied to simultaneously investigate the structure transformation and kinetics of cathode materials during charge/discharge.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b06326

DOI: 10.1021/acsami.7b06326

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.