5 years ago

Optimizing Interfacial Cross-Linking in Graphene-Derived Materials, Which Balances Intralayer and Interlayer Load Transfer

Optimizing Interfacial Cross-Linking in Graphene-Derived Materials, Which Balances Intralayer and Interlayer Load Transfer
Yu Cao, Yilun Liu, Zhiping Xu, Enlai Gao
Graphene-derived layer-by-layer (LbL) assemblies in the form of films or fibers have recently attracted particular interests owing to their low cost, facile fabrication, and outstanding mechanical properties, which could be further tuned by surface functionalization that cross-links graphene sheets in the assembly. However, this interfacial engineering approach has not yet been finely utilized considering the dual roles of cross-links in modifying the intrinsic properties of graphene sheets and their interlayer interactions. In this work, combining first-principles calculations and continuum-mechanics-based model analysis, we find that the functionalization weakens the intrinsic mechanical resistance of graphene, whereas it enhances interlayer load transfer through interlayer cross-linking. There are optimum cross-linking densities or concentrations of the surface functional groups that maximize the overall tensile stiffness, tensile strength and strain to failure of graphene-derived LbL assemblies, arising from the competition between intralayer and interlayer load-bearing mechanisms, as defined by the type of functionalization and size of graphene sheets. Our work quantifies the ultimate mechanical performance of graphene-derived LbL assemblies, on the condition that their microstructures and functionalization could be adequately controlled in the fabrication process.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b04411

DOI: 10.1021/acsami.7b04411

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.