3 years ago

Enhancing the Osteogenic Capability of Core–Shell Bilayered Bioceramic Microspheres with Adjustable Biodegradation

Enhancing the Osteogenic Capability of Core–Shell Bilayered Bioceramic Microspheres with Adjustable Biodegradation
Jia Fu, Lei Zhang, Juncheng Wang, Chen Zhuang, Guojing Yang, Xiurong Ke, Xianyan Yang, Lijun Xie, Sanzhong Xu, Zhongru Gou
This study describes the fabrication and biological evaluation of core–shell bilayered bioceramic microspheres with adjustable compositional distribution via a coaxial bilayer capillary system. Beyond the homogeneous hybrid composites, varying the diameter of capillary nozzles and the composition of the bioceramic slurries makes it easy to create bilayered β-tricalcium phosphate (CaP)/β-calcium silicate (CaSi) microspheres with controllable compositional distribution in the core or shell layer. Primary investigations in vitro revealed that biodegradation could be adjusted by compositional distribution or shell thickness and that poorly soluble CaP located on the shell layer of CaP or CaSi@CaP microspheres was particularly beneficial for mesenchymal stem cell adhesion and growth in the early stage, but the ion release from the CaP@CaSi exhibited a potent stimulating effect on alkaline phosphatase expression of the cells at longer times. When the bilayered microspheres (CaSi@CaP, CaP@CaSi) and the monolayered microspheres (CaP, CaSi) were implanted into the critical-sized femoral bone defect in rabbit models, significant differences in osteogenic capacity over time were measured at 6–18 weeks post implantation. The CaP microspheres showed the lowest biodegradation rate and slow new bone regeneration, whereas the CaSi@CaP showed a fast degradation of the CaSi core through the porous CaP shell so that a significant osteogenic response was observed at 12–18 weeks. The CaP@CaSi microspheres possessed excellent surface bioactivity and osteogenic activity, whereas the CaSi microspheres group exhibited a poor bone augmentation in the later stage due to extreme biodegradation. These findings demonstrated that the bioactive response in such core–shell-structured bioceramic systems could be adjusted by compositional distribution, and this strategy can be used to fabricate a variety of bioceramic microspheres with adjustable biodegradation rates and enhanced biological response for bone regeneration applications in medicine.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b06798

DOI: 10.1021/acsami.7b06798

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.