3 years ago

β-catenin directs long-chain fatty acid catabolism in the osteoblasts of male mice.

Julie L Frey, Ryan C Riddle, Soohyun P Kim, Michael J Wolfgang, Zhu Li
Wnt-initiated signaling through a frizzled receptor and the low-density lipoprotein related receptor-5 (Lrp5) co-receptor instructs key anabolic events during skeletal development, homeostasis, and repair. Recent studies indicate that Wnt signaling also regulates the intermediary metabolism of osteoblastic cells, inducing glucose consumption in osteoprogenitors and fatty acid utilization in mature osteoblasts. In this study, we examined the role of the canonical Wnt-signaling target, β-catenin, in the control of osteoblast metabolism. In vitro, Wnt ligands and agonists that stimulated β-catenin activation in osteoblasts enhanced fatty acid catabolism, while genetic ablation of β-catenin dramatically reduced oleate oxidation concomitant with reduced osteoblast maturation and increased glycolytic metabolism. Temporal ablation of β-catenin expression in osteoblasts in vivo produced the expected low bone mass phenotype and also led to an increase in white adipose tissue mass, dyslipidemia, and impaired insulin sensitivity. Since the expression levels of enzymatic mediators of fatty acid β-oxidation are reduced in the skeleton of β-catenin mutants, these results further confirm the role of the osteoblast in lipid metabolism and indicate that the influence of Wnt signaling on fatty acid utilization proceeds via its canonical signaling pathway.

Publisher URL: http://doi.org/10.1210/en.2017-00850

DOI: 10.1210/en.2017-00850

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.