4 years ago

Dynamic Softening or Stiffening a Supramolecular Hydrogel by Ultraviolet or Near-Infrared Light

Dynamic Softening or Stiffening a Supramolecular Hydrogel by Ultraviolet or Near-Infrared Light
Qiang Zhang, Yihua Yu, Hui Wang, Jingjing Hu, Zhao Zheng, Yiyun Cheng, Junlin Huang
The development of light-responsive hydrogels that exhibit switchable size and mechanical properties with temporal and spatial resolution is of great importance in many fields. However, it remains challenging to prepare smart hydrogels that dramatically change their properties in response to both ultraviolet (UV) and near-infrared (NIR) lights. Here, we designed a dual-light responsive supramolecular gel by integrating UV light-switchable host–guest recognition, temperature responsiveness, and NIR photothermal ability in the gel. The gel could rapidly self-heal and is capable of both softening and stiffening controlled by UV and NIR lights, respectively. Besides stiffness modulation, the bending direction of the gel can be controlled by UV or NIR light irradiation. The smart gel makes it possible to generate dynamic materials that respond to both UV and NIR lights and represents a useful tool that might be used to modulate cellular microenvironments with spatiotemporal resolution.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b07204

DOI: 10.1021/acsami.7b07204

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.